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3 Departamento de Fı́sica Teórica II, Universidad Complutense, 28040 Madrid, Spain

E-mail: francesco.calogero@roma1.infn.it and david.gomez-ullate@fis.ucm.es

Received 26 April 2007, in final form 22 May 2007
Published 20 June 2007
Online at stacks.iop.org/JPhysA/40/F573

Abstract
A new class of many-body models is identified and investigated. Just as those
we recently discovered, these many-body problems are solvable provided the
initial data satisfy certain constraints; for such data the solution of the initial-
value problem can be achieved via algebraic operations, such as finding the
zeros of known polynomials. Entirely isochronous subclasses of these models
are also exhibited, whose generic solutions are completely periodic with the
same fixed period in their entire phase space.

PACS numbers: 02.30.Hq, 02.30.Ik, 45.50.Jf
Mathematics Subject Classification: 34C25, 34C27, 37F10, 37J35

1. Introduction and main results

In a previous paper [4], two novel classes of solvable many-body problems of goldfish type
were identified and investigated. We refer to it for a more detailed description than provided
herein of the general strategy to identify these solvable systems, including the definition of our
terminology (solvable, goldfish, exceptional polynomials subspaces and so on). In the present
paper new models of this kind are studied. They are obtained by considering the motion of
the N roots zn(t) of an (appropriately defined, time-dependent, monic) polynomial ψ(z, t), of
degree N in z, belonging to the exceptional polynomial subspace X2 of the polynomials in z

of degree m up to N, whose first derivative vanishes at two fixed points, say at z = ±1. A
convenient basis in this space reads as follows [5]:

X2 = span{π0(z), π3(z), π4(z), . . . , πN(z)}, (1a)

πm(z) = zm − εm

m

2
z2 − εm+1mz, m = 0, 1, . . . , N, (1b)
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where (here and hereafter)

εm =
{

1, m even
0, m odd.

(2)

This polynomial subspace has a codimension two (with respect to the space of the
polynomials of degree up to N); indeed this definition of the basic polynomials πm(z) implies
the identities π1(z) ≡ π2(z) ≡ 0, in addition to π0(z) = 1, entailing for the (time-dependent,
monic) polynomial ψ(z, t) the representation

ψ(z, t) = πN(z) +
N−3∑
m=1

[cm(t)πN−m(z)] + cN(t) (3a)

as well as the constraint

ψz(±1, t) = 0. (3b)

Here and hereafter N is a positive integer larger than 2, N � 3, and the subscripted variables
denote partial differentiations.

To identify a class of solvable N-body problems, we now focus on the time evolution of
the N zeros zn(t) of this polynomial ψ(z, t),

ψ(z, t) =
N∏

n=1

[z − zn(t)], (3c)

interpreting them as the coordinates of N particles, generally moving in the complex z-plane;
this interpretation is justified by the Newtonian (acceleration equal force) character of the
corresponding equations of motion, see below, which obtain from the assumption that ψ(z, t)

evolve in time according to a linear, second-order, constant-coefficient partial differential
equation (PDE), implying that the corresponding time evolution of the N − 2 coefficients
cm(t), see (3a), is determined by a system of linear ordinary differential equations (ODEs)
with constant coefficients (see below); hence it is solvable by purely algebraic techniques.

To identify this PDE we take advantage of the characteristic property of the space X2, to
be preserved under the action of the following three linear differential operators [5]:

T0 =
(

d

dz

)2

+ z
z2 − 5

z2 − 1

(
d

dz

)
− N, (4a)

T1 = z

(
d

dz

)2

− 2
z2 + 1

z2 − 1

(
d

dz

)
, (4b)

T2 = (z2 − 1)

(
d

dz

)2

− 2z

(
d

dz

)
− N(N − 3). (4c)

(Note that although T0 and T1 have rational coefficients, they do possess an infinite number
of polynomial eigenfunctions [5, 6].) Indeed, as can be easily verified, the action of these
operators on the basic elements πm(z) reads as follows:

T0[πm] = (m − N)πm + m(m − 5)πm−2 − 4m

m−3∑
�=4

[ε�πm−�] − mεmπ0, (5a)

T1[πm] = m(m − 3)πm−1 − 4m

m−4∑
�=2

[ε�πm−1−�] − 2mεm+1π0, (5b)
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T2[πm] = [m(m − 3) − N(N − 3)]πm − m(m − 1)πm−2 + mεmπ0. (5c)

Here and hereafter, we adopt the usual convention according to which a sum vanishes if its
lower limit exceeds its upper limit.

Accordingly, the most general linear, constant-coefficient, second-order PDE maintaining
ψ(z, t) within X2, namely being consistent with the representation (3a) with (3a), reads as
follows:

ψtt + a1ψt + (a2T0 + a3T1 + a4T2)ψ = 0 (6a)

or equivalently, via (4),

ψtt + a1ψt + [a2 + a3z + a4(z
2 − 1)]ψzz +

[
(a2 − 2a4)z − 2a3 − 4

a2z + a3

z2 − 1

]
ψz

− [Na2 + N(N − 3)a4]ψ = 0. (6b)

Here and hereafter, we assume that the four parameters aj are a priori arbitrary (possibly
complex) constants.

Via (5), through a completely straightforward if tedious computation, this PDE entails
that the N − 2 coefficients, cm(t),m = 1, . . . , N − 3, and cN(t), satisfy the following system
of N − 2 ODEs:

c̈m + a1ċm − m[a2 + (2N − m − 3)a4]cm + (N − m + 1)(N − m − 2)a3cm−1

+ (N − m + 2)[(N − m − 3)a2 − (N − m + 1)a4]cm−2

− 4(N − m + 3)a3cm−3 − 4
m−4∑
�=0

[(N − �)(εm−�a2 + εm−�+1a3)c�] = 0,

m = 1, . . . , N − 3, (7a)

c̈N + a1ċN − N [a2 + (N − 3)a4]cN − 6a3cN−3

−
N−4∑
�=0

{(N − �)[εN−�(a2 − a4) + 2εN−�+1a3]c�} = 0. (7b)

These equations are written on the understanding (see (3a)) that c0(t) = 1 and cm(t) = 0 if
m < 0.

Let us re-emphasize that the solution of this system, (7), of N − 2 linear ODEs with
constant coefficients is a purely algebraic task (see below).

The corresponding time evolution of the N zeros zn(t) of the polynomial ψ(z, t) constitutes
therefore a solvable dynamical system, interpretable as an N-body problem when one identifies
zn(t) as the coordinate at time t of the nth (point) particle, generally moving in the complex
z-plane. This interpretation is now justified by the observation (proven in section 2) that the
factorized representation (3c) of the monic polynomial ψ(z, t) via its zeros, when inserted in
the linear PDE (6b) satisfied by ψ(z, t), entails that the N zeros zn(t) evolve according to the
Newtonian equations of motion

z̈n = −a1żn + a2zn

z2
n − 5

z2
n − 1

− 2a3
z2
n + 1

z2
n − 1

− 2a4zn

+ 2
N∑

m=1,m�=n

żnżm + a2 + a3zn + a4
(
z2
n − 1

)
zn − zm

, n = 1, . . . , N. (8a)
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But of course the solvable character of this N-body problem hinges on the validity of the
representation (3a), entailing restriction (3b) that (as shown in section 2) corresponds to the
following four conditions on the initial data of this N-body problem:

N∑
n=1

1

zn(0) ± 1
= 0,

N∑
n=1

żn(0)

[zn(0) ± 1]2
= 0. (8b)

The novelty of this solvable N-body problem is of course due to the rational dependence
on the coordinates zn featured by the second and third terms on the right-hand side of the
equations of motion (8a), associated with the ‘coupling constants’ a2 and a3 and originating
from the operators T0 and T1, see (4).

1.1. Behaviour of the solvable N-body problem (8)

The general solution of the system of N − 2 linear evolution ODEs (7) satisfied by the N − 2
coefficients cm(t),m = 1, . . . , N − 3, and cN(t) reads

cm(t) =
N∑

�=1;l �=N−1,N−2

{
γ (�,+)u(�,+)

m exp[λ(�,+)t] + γ (�,−)u(�,−)
m exp[λ(�,−)t]

}
,

m = 1, . . . , N − 3, N, (9)

where the two (N −2) coefficients γ (�,±) are a priori arbitrary (to be fixed by the initial data).
The quantities λ(�,±) and u(�,±)

m are the eigenvalues and the (components of the), corresponding
eigenvectors of the generalized (algebraic) eigenvalue problem

N∑
m=1;m�=N−2,N−1

Mnmu(�,±)
m = λ(�,±)(λ(�,±) + a1)u

(�,±)
n , � = 1, . . . , N − 3, N, (10a)

where the definition of the (N − 2) × (N − 2) matrix M is evident from (7). The triangular
character of this matrix M (see (7)) entails that the two (N − 2) eigenvalues λ(�,±) are the two
(N − 2) solutions of the (N − 2) decoupled second-degree equations

λ2 + a1λ − �[a2 + (2N − � − 3)a4] = 0, � = 1, . . . , N − 3, N. (10b)

Hence

λ(�,±) = −a1 ± ��

2
, �2

� = a2
1 + 4�[a2 + (2N − � − 3)a4],

� = 1, . . . , N − 3, N.

(10c)

These findings entail that, for generic (possibly complex) values of the ‘coupling constants’
aj , the asymptotic behaviour at large time of the solutions of the N-body problem (8) can be
inferred from the treatment provided in appendix G of [2] (entitled ‘asymptotic behaviour
of the zeros of a polynomial whose coefficients diverge exponentially’). In the special case
when �� vanishes for some relevant value of �, the asymptotic behaviour at large time of the
polynomial ψ(z, t) (see (3a) with (1) and (9)) generally also contains a term linear in t—which
might become dominant as t → ∞ if all the other terms vanish exponentially in this limit.
While clearly, if a1 and (for all the relevant values of �) �� are imaginary, then all motions of
the N-body problem (8) remain confined for all time. And finally (most interestingly) if

a1 = ik1ω, a2 = k4[(2N − 3)k4 − k1]ω2, a4 = k2
4ω

2, (11a)

yielding

λ(�,+) = i�k4ω, λ(�,−) = −i(�k4 + k1)ω, � = 1, . . . , N − 3, N, (11b)
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with ω an arbitrary positive constant (having the significance of a circular frequency) and k1, k4

the two arbitrary integers (positive or negative but not vanishing, to avoid that the eigenvalue
λ vanish, and respecting the restriction k1 �= −2�k4 for � = 1, . . . , N − 3, N , required to
guarantee that λ(�,+) �= λ(�,−)), then clearly the N-body problem (8) is entirely isochronous;
its generic (complex!) solutions—in its entire phase space, except possibly for a subregion of
vanishing measure characterized by the solutions that become singular due to the collision of
two or more particles—are completely periodic,

zn(t + T̃ ) = zn(t), n = 1, 2, . . . , N, (11c)

with a common period T̃ (possibly not the primitive period in all sectors of phase space)
which is a (generally small [7, 3]) integer multiple of a basic period, itself a rational multiple
(depending in an obvious manner on the integers k1 and k4) of the standard period T = 2π/ω

associated with the circular frequency ω.
Clearly this discussion entails that conditions (11a) are sufficient to guarantee that the

N-body problem (8), with N arbitrary (N � 3), is entirely isochronous; for N > 3 (but not for
N = 3, see below) they are also necessary.

It is remarkable that the qualitative behaviour of this N-body problem, (8), turns out to be
quite independent of the value of the coupling constant a3, but this fact is obvious when looking
at the system of linear evolution equations (7) for the coefficients, since the eigenvalues of the
triangular matrix M do not depend on the parameter a3 (but the eigenvectors of course do).

1.2. Example: the three-body case

For N = 3, system (7) reduces to the single ODE

c̈3 + a1ċ3 − 3a2c3 = 6a3, (12a)

whose general solution reads (provided a2 �= 0, as we hereafter assume)

c3(t) = 2a3

a2
+ γ+ exp(λ+t) + γ− exp(λ−t), (12b)

where γ± are the two arbitrary constants and λ± are the two roots of the equation

λ2 + a1λ − 3a2 = 0; (12c)

hence

λ± = 1
pwd2

[−a1 ± (
a2

1 + 12a2
)1/2]

. (12d)

The particle positions zn(t) evolving according to the three-body problem (8) are the three
roots of the cubic equation in z,

z3 − 3z + c3(t) = 0, (13a)

as implied by (3a), (3c) and (1b); hence they satisfy the restrictions

z1(t) + z2(t) + z3(t) = 0, (13b)

z1(t)z2(t) + z2(t)z3(t) + z3(t)z1(t) = −3, (13c)

and their time evolution is determined (by these two formulae and) by the rule

z1(t)z2(t)z3(t) = −c3(t), (13d)

with c3(t) given by (12b) where the two parameters γ± are determined by the initial position
and velocity of one of the three particles (those of the other two are then fixed by the four
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-1 1

(a) (b) (c)

Figure 1. Trajectories in the complex z-plane of one particle of the three-body system (8a) in the
periodic case (a), and in the quasi-periodic and chaotic cases (b) and (c) up to t = 30.

restrictions (8b), or equivalently by (13b) and (13c), and their time derivatives evaluated at the
initial time t = 0).

The fact that the solutions of the three-body problem (8) with N = 3 are compatible with
these formulae is not quite obvious, but it is of course implied by our treatment. This entails
that the behaviour of this model does not depend at all on the coupling constant a4; in fact it can
be shown via (13b) and (13c)—or equivalently via the two equations (15) with N = 3—that
in this N = 3 case the terms proportional to a4 on the right-hand side of (8a) cancel exactly.
Moreover, the dependence of the solutions on the coupling constant a3 is rather trivial (see
(12b)) and certainly does not affect the qualitative behaviour of the system. The values of the
other two coupling constants, a1 and a2, are instead significant (see (12d)); in particular this
model is entirely isochronous provided

a1 = 2ijω, a2 = (j 2 − k2)ω2/3 so that λ± = i(j ± k)ω, (14)

with ω an arbitrary positive constant and j, k the two integers (arbitrary except for the two
restrictions k �= 0 so that λ+ �= λ−, and k2 �= j 2 so that a2 �= 0). This includes the special case
with a1 vanishing and a2 an arbitrary negative constant, when the equations of motion (8a)
are real (if also a3 is real). But, especially when the equations of motion are real, the complex
initial data must generally be assigned in order to avoid that the motion run into a singularity
due to a particle collision.

Some representative trajectories of one of the three coordinates zn(t) in the complex
z-plane are displayed in figure 1.

(a) The first trajectory shows a periodic solution which corresponds to the initial data that
satisfy constraints (8b) and to the coupling constants that satisfy the isochronicity condition
(14), specifically a1 = 8π i, a2 = 4π2, a3 = a4 = 0, corresponding to ω = 2π, j = 2
and k = 1. In this case all the three particles follow this trajectory with a period T = 3.

(b) The second trajectory shows a quasi-periodic solution, which corresponds to the same
initial data as in the previous case, but to the following values of the coupling constants:
a1 = 8π i, a2 = 39.2139, a3 = a4 = 0 corresponding (see (14)) to ω = 2π, j = 2 and
k = 1.01.

(c) The third trajectory shows a chaotic solution which corresponds to the same coupling
constants as in case (a), but to the initial data which do not satisfy constraint (8b).
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2. Proofs

In this section, we show how to arrive at the results reported above whose proofs are not quite
obvious from the previous treatment.

Let us begin by proving that the condition (3b) satisfied by the polynomial ψ(z, t) entails
via (3c), for the zeros zn(t), the conditions

N∑
n=1

1

zn(t) ± 1
= 0, (15)

which are then of course automatically consistent with the equations of motion (8a) and
therefore hold for all time provided they hold initially together with their time derivatives,
see (8b).

Indeed the factorized representation (3a) entails (by logarithmic differentiation)

ψz(z, t) = ψ(z, t)

N∑
n=1

[z − zn(t)]
−1; (16)

hence, together with (3b), it implies (15). �
Next let us indicate how to prove that the PDE (6b) yields, via (3c) with (15), the equations

of motion (8a). This is a standard task, easily accomplished by using the formulae—implied
by (3c) and analogous to (16)—easily obtained and in any case available in the literature (see,
in particular, section 2.3.2 of [2], or the analogous but more complete lists displayed in [1, 3]),
as well as the following two neat formulae (also easily obtained by standard techniques, but
using now both (3c) and (15)):

1

z2 − 1
ψz = ψ

N∑
n=1

(z − zn)
−1 1

z2
n − 1

,
z

z2 − 1
ψz = ψ

N∑
n=1

(z − zn)
−1 zn

z2
n − 1

. (17)

3. Summary and outlook

In this paper, we identified a new class of solvable many-body problems ‘of goldfish type’,
which are solvable by purely algebraic operations provided the positions of the moving particles
satisfy two overall constraints, which are of course compatible with the time evolution and
therefore need to be imposed, in the context of the initial-value problem, only on the initial
data.

This class of many-body problems contains four arbitrary ‘coupling constants’; sufficient
restrictions on their values are also identified guaranteeing that the generic motions are
completely periodic with the same period (isochronous models). A few representative
instances of motions featured by N-body problems of this kind (with N = 3)—both in
the isochronous and non-isochronous cases—have been exhibited.

Another special class of these many-body problems is characterized (via a well-known
mechanism, see section 4.2.3 of [3]) by the remarkable property to yield generic motions
which are not periodic but approach asymptotically limit cycles all having the same period;
we plan to discuss dynamical systems featuring this phenomenology (in the context of the
models identified herein, and also more generally) in a separate paper [8]. Another direction of
future investigation suggested by the results presented herein is to identify and investigate other
systems whose solvability is connected with exceptional polynomial subspaces of codimension
higher than 2 [5, 6].
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[4] Calogero F and Gómez-Ullate D 2007 Two novel classes of solvable many-body problems of goldfish type with

constraints J. Phys. A: Math. Theor. 40 1–19
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